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This note provides some explanation of the fact that, contrary to the requirements of 
local isotropy, the skewness S of the streamwise temperature derivative a8/axl has 
been observed to  be a non-zero constant of magnitude of about unity in high-Reynolds- 
number and high-P6clet-number turbulent shear flows. Measurements in slightly 
heated homogeneous shear flows and in unsheared grid turbulence suggest that S is 
non-zero only when the mean shear dUJdx, and the mean temperature gradient 
dT/dx ,  are both non-zero. The sign of S is given by - sgn (dUl/dx,). sgn (dT/dx,). 
For fixed dU,/dx,, S is of the form tanh (ctdT/dx,), CL being a constant, while for fixed 
dT/dx,, it is of the form S/S* = 1 - p1 exp ( - p27), where S* is a characteristic value 
of S, p1 and ~3, are positive constants, and r can be interpreted as a ‘total strain ’. The 
derivative skewness data in other (inhomogeneous) shear flows are also compatible 
with the latter relation. Predictions from a simplified transport equation for ( a O / a ~ , ) ~ ,  
derived in the light of the present experimental observations, are in reasonable agree- 
ment with the measured values of s. A possible physical mechanism maintaining S 
is discussed. 

1. Introduction 
The concept of local isotropy, introduced by Kolmogorov (1941), implies that the 

small-scale properties in high-Reynolds-number turbulence are isotropic irrespective 
of the gross details of the flow. Oboukhov (1949) and Corrsin (1952) independently 
suggested that local isotropy must be applicable to transported scalar fields as well, 
provided that the Reynolds and PBclet numbers are sufficiently large. If locally isotro- 
pic effects indeed dominate small scale properties such as the spatial derivatives of 
the temperature 0, invariance by reflexion about the x1 axis (the direction of the mean 
flow speed U,) requires that the derivative skewness S = ( a O / a ~ , ) ~ / ( a 0 / a x , ) ~ ~  should 
vanish. However, measurements in shear flows with heat transfer have shown that S 
is of order unity for a relatively wide range of Reynolds numbers (table 1). As shown 
by Gibson, Friehe & McConnell (1977) and Mestayer et al. (1976), the sign of this 
parameter is determined by the signs of the mean velocity and the mean temperature 
gradients. 
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0.6 
0.81 
1.08 
0.70 

Flow Source R A 

Heated wake Freymuth & Uberoit (1971) 126 
188 

Gibson et al. (1977) 336 
Cooled wake Gibson et al. (1977) 336 
Heated jet Antonia & Van Atta (1975) 240 

1154 

185 
240 
255 

Gibson et al. (1977) 457 

Sreenivasan & Antonia (1977) 100 
0.87 
0.99 
0.75 
0.98 

Heated boundary Gibson, Stegen & Williams 400 
layer (1970) 540 

750 
950 

920 
975 

1100 
1140 
1200 
1200 

Gibson et al. (1977) 1095 
1126 

Sreenivasan el al. (1977) 135 
155 
165 
180 

Mestayer et al. (1976) 890 

Sreenivasan & Antonia (1977) 1100 

0.861 
0.65 
0.89 
0-56 
0.96 
0-77 
0.85 
0.77 
0.77 
0.71 
0.79 
0.85 
0.75 
0.99 
1 *oo 
0.98 
1.00 
0.671 

’ 

Average 
PI 

0.83 

0.82 

t Only the data for RA 2 100 ere given here. The microscale Reynolds number RA uih/v.  

TABLE 1. Collection of data on the skewness of the temperature derivative 
in inhomogeneous shear flows. 

The non-zero value of X implies a ramp-like character for the temperature signal; 
in fact, Antonia, Prabhu & Stephenson (1975), Mestayer et al. (1976) and Gibson 
et al. (1977) have observed that the temperature signal in shear flows possesses a 
large-scale ramp-like feature with a sharp leading (or trailing) edge and a gradually 
tapering trailing (or leading) edge. Furthermore, Sreenivasan, Antonia & Britz (1  979) 
showed that these large-scale ramps contribute most of the observed magnitude of 
the skewness. Gibson et al. (1977) and Mestayer et al. (1976) also suggested that the 
presence of the mean shear is a necessary condition for these ramps to exist. The 
implication is that the mean rate of strain acting on the turbulence somehow orients 
it in such a way as to cause the ramp-like large-scale features observed in the tem- 
perature signals, thus producing a non-zero derivative skewness. Tavoularis & Corrsin 
(1981 a) have recently incorporated this view in a phenomenological explanation of the 
observed derivative skewness in homogeneous shear flows. 

A fundamental way of studying the skewness problem is to deduce the transport 
equation for ( M / ~ X ~ ) ~  (and, if possible, for 8 itself), and examine the equation term 
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by term. Wyngaard (1976) has in fact made such an attempt. Unfortunately, such an 
attempt suffers from difficulties in estimating the various terms accurately. For the 
present, i t  appears reasonable to  combine judiciously this basic approach with a 
certain degree of empiricism based on experiment. 

The purpose of this note is to  examine the dependence of the magnitude and sign 
of the derivative skewness on the mean velocity and temperature gradients. Experi- 
ments are conducted in slightly heated homogeneous shear flows with homogeneous 
and non-homogeneous temperature fields, as well as in non-sheared 'isotropic ' turbu- 
lence. The mean velocity and mean temperature fields in these simple flows can be 
prescribed independently, and thus a controlled study of the problem on hand is 
possible. The general conclusions drawn from these measurements are then used in 
exploring possible simplifications of the transport equation for ( a B / a ~ , ) ~ .  A compari- 
son is then made of the predictions from this simplified equation with the measured 
derivative skewness values. Finally, the present data are used also to provide a basis 
for comparison with measurements in inhomogeneous shear flows. 

2. Experimental set-up and instrumentation , 

2.1, Description of jlows 

Most measurements were made in a wind tunnel with a contraction ratio of 9 and a 
nominally 30 x 30 cm square, 330 cm long, test section. Measurements were made in 
the following flows : 

(a)  In  the region of near-homogeneity and isotropy behind a uniformly heated grid 
of round rods with a square mesh of 2.54 cm and a solidity of 0.36. R, (=  u;h/v, with 
the usual definition that u; is the r.m.s. streamwise velocity fluctuation and h is the 
Taylor microscale) in this flow was about 65 a t  xl/M = 50. All rods were uniformly 
heated electrically. The resulting maximum mean temperature rise of 2.5 "C was 
assumed to  be small enough to  allow temperature to  be treated as a passive scalar. 

( b )  I n  a flow such as (a ) ,  but with the horizontal rods of the grid heated to different 
temperatures, so that a (constant or variable) mean temperature gradient was created. 
The maximum mean temperature rise was again about 2.5 "C. 

( c )  I n  three homogeneous shear flows, two of which (dUJdx, = 13.5s-l and 
15.6 s-l, x2 being the transverse co-ordinate) were created using the shear flow generator 
of Rose (1966) a t  two different centre-line mean speeds, and the third (dU,/dx, = 44 s-*) 
using that of Tavoularis & Corrsin (1981 b ) .  In  the low-shear experiments, the desired 
mean temperature profiles were created by heating the horizontal rods of the grid 
used in (a ) ,  located 20 mesh sizes upstream of the shear generator. This arrangement 
is complementary to that used by Rose (1970), and gives reasonably good linear velo- 
city profiles. I n  these flows, R, varied (typically) between about 70 a t  xl/h = 5 
(where his the height of the tunnel) and 130 a t  xl/h = 10; the corresponding variation 
in the high-shear case was between about 100 and about 150. 

For local isotropy to hold, clearly, the Reynolds and PBclet numbers must be large. 
An examination of table 1 (or, better still, the summary sketch of Sreenivasan & 
Antonia 1977) indicates that  there is no discernible trend of IS1 with RA for RA 60. 
Thus, i t  is conceivable that results concerning S in the present flows would also apply 
qualitatively to higher R, sheared turbulence. 
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( d )  Additional measurements were also made behind a low-solidity (0.023) square- 
mesh heated screen (mesh size 1 . 1 1  cm) located a t  20 or 34 mesh lengths behind an 
unheated round-rod grid of 2-54 cm square mesh and 0-44 solidity. R, in this flow was 
about 40. The essential idea of this experiment was to  create a temperature field 
independent of the velocity field. The low screen solidity and the small screen-wire 
Reynolds number (2: 38) ensured that the screen created minimum disturbance to  
the velocity field created by the grid (Sreenivasan et al. 1980). The maximum mean 
temperature rise was about 1 "C. These measurements were made in another wind 
tunnel with a 30 x 46 cm nominal test section. 

2.2. Instrumentation 

A DISA manufactured X-wire probe with wires 5 ,um in diameter and 1.2 mm long 
was used for measuring velocity fluctuations. The hot wires were operated on two 
DISA 55D01 constant temperature anemometers powered by d.c. power supplies. 
The local mean t,emperature as well as the reference temperature upstream of the 
heating system were measured by two Fenwal Electronics GC32M21 thermistor 
probes. The fluctuating temperature was measured with cold wires of diameter 0.6 ,um 
(home-made, 2: 0.8 mm long) and 1 ,um (made by DISA, 0.4 mm long). Previous 
studies (e.g. LaRue, Deaton & Gibson 1975, HBjstrup, Rasmussen & Larson 1976) 
have shown that the - 3 dB points for fresh wires are around 5 kHz for 0.6 ,um wire 
and 3 kHz for the DISA wires. The cold wires were operated by a home-made constant 
current source (Tavoularis 1978a). The operating current of 0.3 mA was low enough 
to  ensure a negligible velocity sensitivity of the cold wires. 

The analysis to  be presented in 9 4 shows the need to  measure the quantity 

(au2/%) (as/a% )2, 
where u2 is the component of the fluctuating velocity in x2  direction. For this purpose, 
a DISA cold-wire was positioned vertically about 0.5 mm from the nearest wire of 
the X-wire probe. The temperature dependence of the hot-wires in a heated flow was 
accounted for through the relation 

where A and B are calibration constants and R, is the hot-wire resistance. The effect 
of temperature appears entirely through the (hypothetical) unheated wire resistance 
R(T). The exponent n is determined so as to give the best fit to  the data in the least- 
square sense. The adequacy of (1) for small heating has been established, for example, 
by Antonia et al. (1975) and Tavoularis (1978b). 

All the signals were sufficiently pre-amplified before being digitized and processed 
on a P D P  11/40 computer. All measured quantities were corrected for noise assuming 
that the signal and noise were uncorrelated. The streamwise derivatives au,/ax, and 
aO/ax, were obtained by differencing the digitized signals and assuming that Taylor's 
'frozen flow' approximation is valid. 



On the skewness of the temperature derivative in turbulent $ow8 787 

Description of flow dU,/dx, dTldx ,  s 
(a) Grid turbulence behind a uniformly 0 0 o t  

o t  

(c) Uniformly sheared flow with different mean Non-zero 0 o t  

+ + -1 
+ $  

+ +'s 
-T 

heated screen or grid 

mean temperature gradient 

temperature gradients ( +  or - )  

( b )  Grid turbulence with linear or asymmetric 0 Non-zero 
( +  or - )  

- + 
- 
- - 

t This value is,not exactly zero, but o f  the order of 0.1. When corrected for the velocity 
sensitivity [following Wyngaard 1971 and Gibson et al. 1977),  it  is usually negligibly smell in 
the case of the heated screen. In the heated grid case, a small residual value of S still remains 
(see also Antonia et al. 1978),  possibly due to the initial coupling of the velocity and temperature 
fields. 

$ The magnitude itself depends on other conditions, as discussed later in this section. 

TABLE 2. Qualitative summary of the results of measurements in homogeneous flows. 

3. Results 
Table 2 shows qualitatively the results of the present measurements. Two chief 

(a)  The derivative skewness S is non-zero only when both dU,/8x2 and dT/dx2  are 
non-zero. This is the most significant difference between homogeneous and inhomo- 
geneous shear flows. I n  the latter category of flows such as heated wakes and jets, the 
skewness of the temperature derivative is non-zero even along the line of symmetry 
(e.g. Freymuth & Uberoi 1971,  1973;  Gibson et al. 1977;  Sreenivasan & Antonia 1977) ,  
where both the mean velocity and temperature gradients are locally zero. Because of 
the strong inhomogeneities and the associated large-scale transport, it is not hard to 
see why local conditions alone are not relevant in these flows; see also 3 5. 

( 6 )  As a special case of a more general expression suggested by Mestayer et al. 
( 1 9 7 6 )  and Gibson et al. (1977) ,  the sign of S is given by 

conclusions are immediate: 

- sgn (dUJdx,)  x sgn ( d T / d x , ) .  

Before we can examine the dependence of the magnitude of S on dUJdx, and 
d T / d x , ,  i t  is essential to have some background information about the homogeneous 
shear flows mentioned in ( c )  of 3 2 .  These flows undergo an initial streamwise develop- 
ment, but attain a certain asymptotic state in which, while each turbulent quantity 
individually varies with streamwise distance, the non-dimensional ratios of turbulence 
quantities do not. All available experimental data on homogeneous shear flows 
(summarized by Sreenivasan 1979)  suggest that  this asymptotic state is attained 
when the non-dimensional parameter (xl/Ul) (dUl/dx,) 2 4. (The similar estimate 
provided by Harris, Graham & Corrsin ( 1  977)  is somewhat conservative.) For the 
high shear case, this state is reached for x,/h 4-5, while for the low shear cases, 
this state is barely reached at  x l / h  = 11.  For this reason, measurements were made 
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FIUURE I .  Variation of S with dT/dx,  in the asymptotic region of homogeneous shear flow. 
0. 0. @, dUl/dx2 = 13-5s-1; A ,  A, A, dUJdx,  = 15.6s- l ;  0, dU,/dx, = 44s-l. Different 
symbols in the first two sets of dU,/dx,  correspond to different temperature profiles. -, 
tanh (0 .20dT/dx2) ,  dTldx,  in "C m-l. 

in the region 5 6 x,/h 6 11 in the high shear experiment, and at  q / h  = 1 1  (unless 
otherwise specified) in the low shear cases. 

Figure 1 shows the variation of S with dT/dx,. Although the behaviour of the skew- 
ness data in figure 1 seems to depend on the precise value of the mean shear, the 
general trend seems reasonably independent of it. S is roughly antisymmetric with 
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0 
2 4 6 8 

T = ( Y Z I ~ E ) ( ~ U , / P . U ~ )  

FIGURE 3. Variation of 18) with the parameter 7 .  0, 0 ,  as in figure 2 ;  C3,  average value for 
wakesandjets(7 N 4); 0 ,averagevalueforboundarylayers(~ N 5.75).-, 1-1.2exp( -0 .777) .  

dT/dx, and, for sufficiently large (dT/dx,( ,  has essentially the same magnitude inde- 
pendent of its sign. This suggests that in the measuring process the velocity contami- 
nation of the temperature signal must be small, because the error due to this effect 
is always positive (Wyngaard 1971). The general behaviour can be idealized by a 
relation of the type 

- S sgn (dUJdx,) = tanh a - , (3) ( :3 
where the constant a E 0.2 when dT/dx ,  is expressed in "C m-l. Relation (3) is also 
shown in figure 1. 

Regarding the dependence of the magnitude of S on the mean shear dUJdx,, it  is 
clear from figure 1 that the nearly constant value of S attained for sufficiently large 
IdT/dx,( is independent also of dUJdx,. But, if the flow is still developing, IS1 in- 
creases with x1 even for fixed dUJdx, and dT/dx,. Figure 2 shows two cases with 
comparable dT/dx,, but substantially different dUl/dx,. For the flow with larger 
dU,/dx,, IS/ initially increases with increasing xl,  but settles down to a constant 
( N 0.9) for x l /h  2 4. But, for the flow with the lower mean shear (dUl/dx, 21 13.5 s-l), 
IS1 increases monotonically with xl, and seems to have attained the asymptotic value 
only around x,/h = 11. 

Figure 3 shows that the two sets of the skewness data coincide when plotted against 
the parameter T = (p2/2s) (dUl/dx,), where iF and E are respectively the turbulent 
kinetic energy and the mean dissipation rate per unit mass; the significance of this 
parameter will be discussed in $ 5 .  Experimental data can be roughly represented by 
the empirical relation 

where S* is the asymptotic value of the derivative skewness for large values of 7 .  

- 

S/S* = 1 - 1.2 exp ( - 0.77~) ,  (4) 
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It would be interesting to examine whether the skewness measurements in other 
(inhomogeneous) shear flows are compatible with (4). The parameter 

7 = (42/2€) (au,/ax,) 

in general varies across an inhomogeneous flow such as a wake, jet or boundary layer, 
but there is, in all these flows, a region of nearly constant T which can be taken to be 
a characteristic value. This value is approximately 4 for fully developed jets and wakes 
and about 5.75 for fully developed boundary layers. Figure 3 shows that all the skew- 
ness measurements in these various flows are generally consistent with (4). Because of 
the fairly large scatter in the measurements (see table l), only the average value of 181 
is plotted here for each class of flows. 

4. A simplified transport equation for ( a B / a ~ , ) ~  

by Corrsin (1952) as 
The balance equation for the instantaneous temperature fluctuation 8 was derived 

( 5 )  
ae aT a0 ae a8 a 2 e  

at 3axj ? a x j  3 axj 3 a x j  7-9 
- + ~ . - - + U . - + ~ . - - ~ . -  = 

where capital letters indicate mean quantities, lower-case letters indicate fluctuations, 
and y is the thermal diffusivity. Differentiating ( 5 )  with respect to xl,  multiplying the 
resulting equation by ( ~ O / ~ X , ) ~ ,  noting that 

and, finally, averaging, we get the general transport equation for ( a O / a ~ ~ ) ~  as 

In a steady, ‘homogeneous’, shear flow with a linear temperature profile where 

(ii) U, = U3 = 0, - au1 - = dU1 - = constant, 
ax, ax, 

= constant, 
aT d T  aT 8T 

ax1 ax, ax, dx, 
- 0, - _ -  - - =  

(iii) a , u 1 ( g ) 3  a < 
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0 4 8 12  

x I l l 1  

FIGURE 4. An approximate balance between the left-hand side and the first term on the right- 
hand side of equation (8). A, ) U ,  (a/ax,)(aO/a~,)~; x , - (aT/ax,)(&,/az,) ( X ? / ~ X , ) ~ ;  dU,/dx,  = 
13.4 s-,. 

equation (7) simplifies to 

Note that the effect of the mean shear dU,/dx2 is only indirectly felt since it does 
not appear explicitly in (8); no simple dependence of S on the mean velocity gradient 
can thus be expected. On the other hand, the mean temperature gradient d T / d x 2  
appears as a multiplying factor in the first term on the right-hand side of (8). 

In homogeneous and locally isotropic turbulence, each term in (8) is separately 
zero; clearly then, we are here seeking some subtle failure of the concepts of local iso- 
tropy. Since conventional order of magnitude estimates of derivatives and products 
of derivatives usually resort to local isotropy, such estimates for all the terms cannot 
in general be expected to be meaningful, although it is possible that some terms may 
behave strictly as required by local isotropy. Such order of magnitude estimates are 
especially difficult for the second and fourth terms on the right-hand side of (8); see 
Wyngaard ( 197 6).  

Therefore, it appears that further rational simplification of (8), based on order-of- 
magnitude estimates alone, is not possible at  this stage. We shall now make use of an 
observation reported in 5 3, namely that if we let d T / d x ,  become zero (by heating the 
flow to a uniform mean temperature), all other conditions remaining the same, the 
skewness of aB/axl is zero. This means that under those conditions there is a balance 
between the second, third, and fourth terms on the right-hand side of (8). There is 
no good a priori reason to believe that these same three terms add up to zero when 
dT/dx2 is non-zero, but measurements seem to support such a conjecture. Figure 4 
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shows the measured values of the left-hand side and of the first term on the right-hand 
side of (8). Considering the uncertainties in the graphical differentiation of the measured 
( a @ / a ~ , ) ~  and in the measurement of (au2/axl) (a8/axl)2, it appears that a rough balance 
prevails between the two terms; the balance for the high shear case (not shown in the 
figure) is even better. The only other term we have been able to measure with any 
reliability, namely the third term on the right-hand side of (8), was found to be very 
small in comparison. 

Based on this evidence, we suggest that an approximate balance of the type 

governs the streamwise development of (88 /8~ , )~ ,  at  least for the flows examined 
here. This approximation does not imply anything individuully for the neglected terms, 
mainly the second and fourth terms on the right hand side of (8), but it suggests that 
their sum essentially vanishes. Some further justification for (9) can be obtained from 
a consideration of the linearized equation for 8, from which an explicit expression for 

t Here, the right-hand side of (9) is independent of x2 by transverse homogeneity, whereas 
the left-hand side depends on x2 through Vl. Inconsistency of this kind has previously been 
noted for second-order correlations (Champagne, Harris & Corrsin 1970; Harris et al. 1977; 
Tavoularis & Corrsin 1981 a), and arises essentially because steady homogeneous flow with mean 
shear is impossible to obtain. In  a moving frame, of course, the operator U,(a/az,) should be 
interpreted as d ld t .  
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( a B / a ~ , ) ~  can be obtained. This expression shows that ( a6/ax1)3 depends directly on 
aT/ax, and on statistical quantities involving au,/ax,, somewhat as in (9). 

Since our concern is the skewness of a6/axl, we now integrate (9) along x1 (for a 
given x2/h)  to obtain 

The integrand being a measured quantity, we can obtain at any x1 knowing 
its value a t  an initial station x1 = 6. This calculated can now be divided by 
the measured a t  that x1 to obtain the calculated skewness. Figure 5 shows 
that the calculated and the measured values of S are of comparable magnitudes. It 
is interesting to note that equation (10) predicts an S that hardly varies with x1 in 
the high shear experiment, while also predicting that S varies substantially with x1 
in the low shear case, just exactly as the measurement shows. Figure 5 also shows that 
the choice of the origin 6 is not crucial to this conclusion. 

5. Discussion and conclusions 
The observation in 3 3 that in homogeneous flows the skewness S of the temperature 

derivative is non-zero only when dUl/dx, and dT/dx, are both non-zero considerably 
simplifies the transport equation for the third moment of the temperature derivative. 
According to the simplified equation (9), ( a B / a ~ , ) ~  depends essentially on the term 
(dT/dx,) (au,/ax,) (a6/8x1)2. This term obviously vanishes withdT/dx,; it also vanishes 
when the mean velocity is uniform (because of reflexional symmetry). 

The sign of S is determined by those of dUJdx, and dT/dx, according to (2). The 
magnitude of S bears a fairly straightforward relation to that of dT/dx, according to 
(3): for small dT/dx,, S cc dT/dx,, but is independent of dT/dx, for large JdT/dx,I. 
However, the dependence of S on dUJdx, is more involved. It appears from figure 3 
that the parameter r is reasonably successful in correlating the skewness data for a 
fairly wide variety of flow situations. One possible interpretation of r is that it  is a 
product of the rate of strain and a characteristic time over which this rate of strain 
acts on an identifiable entity of turbulence. For the energy containing eddies, the 
characteristic time isF/2e, and T can be interpreted as the total strain? that acts on 
the energy containing eddies during their life time. 

The seemingly unique dependence of IS\ on total strain (instead of the rate of strain) 
reminds us of the rapid-distortion situation (e.g. Ribner & Tucker 1953; Batchelor 
& Proudman 1954; Townsend 1976). Although the plane shear strain imposed by the 
mean velocity distribution in shear flows (including the case of homogeneous shear 
flows studied here) is not ‘large’ in the rapid-distortion sense, Townsend’s (1976) 

t The interpretation that 7 is a total strain is not altogether unequivocal, because it can also 
be interpreted (perhaps somewhat less convincingly) as a dimensionless mean strain rate 
( d U l / d x 2 ) / ( u ‘ / l ) ,  where u’ll is a large eddy turn-over rate. Noting that e -uQ/L, we have 

dU, /dx ,  uf2 d U ,  - 7. _ _ _ N _ _  

u’/E F dx, 
We will not consider this furtlier. 
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calculations show that the turbulence structure observed in these shear flows is essen- 
tially the same as that produced by the application of a ‘large’ shear strain rate for a 
‘small’ amount of time on an initially isotropic (or ‘structureless’) field, as long as 
the total strain is the same in both cases. 

The definite relation observed between IS1 on one hand and dUJdx, and dTldx,  
on the other suggests the following possible physical mechanism. The straining effect 
of the mean shear causes a preferential orientation of the large structure; in the 
presence of a mean temperature gradient, the heat transport due to these preferentially 
oriented structures results in ramp-like character in the temperature signal, thus 
resulting in non-zero skewness value of the derivative.t The larger the mean shear 
the quicker (in terms of the large eddy turn-over time) is the asymptotic value of S 
reached. The fact that this asymptotic value (attained for ‘large’ 7, empirically for 
r 2 4) is independent of dU,/dx, and dTldx ,  (provided the latter is greater than a 
certain value, see figure 1 )  suggests that although the straining effect due to the mean 
shear itself persists indefinitely, the orientation of the turbulence structure does not 
evolve beyond a certain ‘equilibrium’ state, Further orienting effect of the mean 
rate of strain is counteracted by some strain-relieving mechanism, so that further 
evolution does not occur. 

As already pointed out, the chief difference in the behaviour of S between the 
homogeneous flows and flows such as jets, wakes, and boundary layers is that in the 
latter class of flows there is a large-scale inhomogeneity. Clearly, one of the chief con- 
clusions of the present study that both dUJdx, and dT/dx,  must be locally non-zero 
for S to be non-zero does not hold for the inhomogeneous flows, as observations of S 
on the centre-line of jets and wakest have shown. Another situation where this rule 
may not work is in the presence of a thermal interface in a homogeneous turbulent 
flow. Perhaps for inhomogeneous flows a suitable global average of aU,/ax:, and aT/ax, 
should replace the local values of the present analysis. The physical mechanism need 
not, however, be very different, but only need be modified by allowing for the bulk 
transport. 
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t The ramp model also successfully explains the measured skewness of temperature derivatives 
in z8 and xQ directions (Sreenivasan, Antonia & Danh 1977). 

$ In  the traditional experiments on heated (or cooled) wakes and jets, the maxima (or the 
minima) of mean velocity and mean temperature profiles coincide. Consequently for a more 
crucial test of some of the hypotheses made here, especially designed experiments have been 
made; these will be reported separately. 
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